Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(8): eadk2904, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381818

RESUMEN

We present a robust radiocarbon (14C) chronology for burials at Sakhtysh, in European Russia, where nearly 180 inhumations of Lyalovo and Volosovo pottery-using hunter-gatherer-fishers represent the largest known populations of both groups. Past dating attempts were restricted by poor understanding of dietary 14C reservoir effects (DREs). We developed a DRE correction approach that uses multiple linear regression of differences in 14C, δ13C, and δ15N between bones and teeth of the same individuals to predict DREs of up to approximately 900 years. Our chronological model dates Lyalovo burials to the early fifth millennium BCE, and Volosovo burials to the mid-fourth to early third millennium. It reveals a change in the subsistence economy at approximately 3300 BCE, coinciding with a reorientation of trade networks, and dates the final burial to the early Fatyanovo period, the regional expression of the Yamnaya/Corded Ware expansion. Our approach is applicable when freshwater 14C reservoir effects are poorly constrained and grave goods cannot be dated directly.


Asunto(s)
Entierro , Diente , Humanos , Federación de Rusia , Dieta , Huesos
2.
Am J Biol Anthropol ; : e24903, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308451

RESUMEN

OBJECTIVES: Determine the geographic place of origin and maternal lineage of prehistoric human skeletal remains discovered in Puyil Cave, Tabasco State, Mexico, located in a region currently populated by Olmec, Zoque and Maya populations. MATERIALS AND METHODS: All specimens were radiocarbon (14 C) dated (beta analytic), had dental modifications classified, and had an analysis of 13 homologous reference points conducted to evaluate artificial cranial deformation (ACD). Following DNA purification, hypervariable region I (HVR-1) of the mitogenome was amplified and Sanger sequenced. Finally, Next Generation Sequencing (NGS) was performed for total DNA. Mitochondrial DNA (mtDNA) variants and haplogroups were determined using BioEdit 7.2 and IGV software and confirmed with MITOMASTER and WebHome softwares. RESULTS: Radiocarbon dating (14 C) demonstrated that the inhabitants of Puyil Cave lived during the Archaic and Classic Periods and displayed tabular oblique and tabular mimetic ACD. These pre-Hispanic remains exhibited five mtDNA lineages: A, A2, C1, C1c and D4. Network analysis revealed a close genetic affinity between pre-Hispanic Puyil Cave inhabitants and contemporary Maya subpopulations from Mexico and Guatemala, as well as individuals from Bolivia, Brazil, the Dominican Republic, and China. CONCLUSIONS: Our results elucidate the dispersal of pre-Hispanic Olmec and Maya ancestors and suggest that ACD practices are closely related to Olmec and Maya practices. Additionally, we conclude that ACD has likely been practiced in the region since the Middle-Archaic Period.

3.
Sci Rep ; 13(1): 17389, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833364

RESUMEN

Several dog skeletons were excavated at the Roman town of Augusta Raurica and at the military camp of Vindonissa, located in the northern Alpine region of Switzerland (Germania Superior). The relationships between them and the people, the nature of their lives, and the circumstances of their deaths are unclear. In order to gain insight into this dog population, we collected 31 dogs deposited almost simultaneously in two wells (second half of the third century CE), three dogs from burial contexts (70-200 CE and third to fifth century CE) at Augusta Raurica, and two dogs from burial contexts at Vindonissa (ca. first century CE). We detected a mixed population of young and adult dogs including small, medium and large sized individuals. Three small dogs had conspicuous phenotypes: abnormally short legs, and one with a brachycephalic skull. Stable isotope analysis of a subset of the dogs showed that their diets were omnivorous with a substantial input of animal proteins and little variation, except one with a particularly low δ15N value, indicating a diet low in animal proteins. Partial mitochondrial DNA sequences from 25 dogs revealed eight haplotypes within canine haplogroup A (11 dogs; 44%; 5 haplotypes), C (8 dogs; 32%; 1 haplotype), D (4 dogs, 16%; 1 haplotype) and B (2 dogs, 8%; 1 haplotype). Based on shotgun sequencing, four Roman mitogenomes were assembled, representing sub-haplogroups A1b3, A1b2 and C2. No canine pathogens were identified, weakening the assumption of infectious disease as a cause for dog disposal. The genetic and morphological diversity observed in dogs of Augusta Raurica and Vindonissa is similar to modern dog diversity.


Asunto(s)
ADN Mitocondrial , Variación Genética , Adulto , Perros , Humanos , Animales , Análisis de Secuencia de ADN , Suiza , ADN Mitocondrial/genética , Dieta , Haplotipos , Filogenia
4.
Cell Genom ; 3(9): 100377, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37719142

RESUMEN

The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head.

5.
Proc Biol Sci ; 290(2003): 20230622, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464758

RESUMEN

Yersinia pestis is the causative agent of at least three major plague pandemics (Justinianic, Medieval and Modern). Previous studies on ancient Y. pestis genomes revealed that several genomic alterations had occurred approximately 5000-3000 years ago and contributed to the remarkable virulence of this pathogen. How a subset of strains evolved to cause the Modern pandemic is less well-understood. Here, we examined the virulence-associated prophage (YpfΦ), which had been postulated to be exclusively present in the genomes of strains associated with the Modern pandemic. The analysis of two new Y. pestis genomes from medieval/early modern Denmark confirmed that the phage is absent from the genome of strains dating to this time period. An extended comparative genome analysis of over 300 strains spanning more than 5000 years showed that the prophage is found in the genomes of modern strains only and suggests an integration into the genome during recent Y. pestis evolution. The phage-encoded Zot protein showed structural homology to a virulence factor of Vibrio cholerae. Similar to modern Y. pestis, we observed phages with a common origin to YpfΦ in individual strains of other bacterial species. Our findings present an updated view on the prevalence of YpfΦ, which might contribute to our understanding of the host spectrum, geographical spread and virulence of Y. pestis responsible for the Modern pandemic.


Asunto(s)
Bacteriófagos , Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Profagos/genética , Pandemias/historia , Virulencia/genética , Peste/epidemiología
6.
iScience ; 26(7): 107034, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360687

RESUMEN

The Basel-Waisenhaus burial community (Switzerland) has been traditionally interpreted as immigrated Alamans because of the location and dating of the burial ground - despite the typical late Roman funeral practices. To evaluate this hypothesis, multi-isotope and aDNA analyses were conducted on the eleven individuals buried there. The results show that the burial ground was occupied around AD 400 by people belonging largely to one family, whereas isotope and genetic records most probably point toward a regionally organized and indigenous, instead of an immigrated, community. This strengthens the recently advanced assumption that the withdrawal of the Upper Germanic-Rhaetian limes after the "Crisis of the Third Century AD" was not necessarily related to a replacement of the local population by immigrated Alamannic peoples, suggesting a long-lasting continuity of occupation at the Roman periphery at the Upper and High Rhine region.

7.
Emerg Infect Dis ; 29(6): 1280-1283, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209696

RESUMEN

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Malaria/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum , Microscopía/métodos , Italia/epidemiología
8.
Aging Cell ; 22(5): e13819, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951219

RESUMEN

Variation in apolipoprotein E (APOE) has been shown to have the strongest genetic effect on human longevity. The aim of this study was to unravel the evolutionary history of the three major APOE alleles in Europe by analysing ancient samples up to 12,000 years old. We detected significant allele frequency shifts between populations and over time. Our analyses indicated that selection led to large frequency differences between the earliest European populations (i.e., hunter-gatherers vs. first farmers), possibly due to changes in diet/lifestyle. In contrast, the allele distributions in populations from ~4000 BCE onward can mainly be explained by admixture, suggesting that it also played an important role in shaping current APOE variation. In any case, the resulting allele frequencies strongly influence the predisposition for longevity today, likely as a consequence of past adaptations and demographic processes.


Asunto(s)
Apolipoproteínas E , Longevidad , Humanos , Recién Nacido , Alelos , Frecuencia de los Genes/genética , Longevidad/genética , Apolipoproteínas E/genética , Europa (Continente)
9.
Genome Biol ; 23(1): 250, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36510283

RESUMEN

BACKGROUND: The pathogen landscape in the Early European Middle Ages remains largely unexplored. Here, we perform a systematic pathogen screening of the rural community Lauchheim "Mittelhofen," in present-day Germany, dated to the Merovingian period, between fifth and eighth century CE. Skeletal remains of individuals were subjected to an ancient DNA metagenomic analysis. Genomes of the detected pathogens were reconstructed and analyzed phylogenetically. RESULTS: Over 30% of the individuals exhibit molecular signs of infection with hepatitis B virus (HBV), parvovirus B19, variola virus (VARV), and Mycobacterium leprae. Seven double and one triple infection were detected. We reconstructed four HBV genomes and one genome each of B19, VARV, and M. leprae. All HBV genomes are of genotype D4 which is rare in Europe today. The VARV strain exhibits a unique pattern of gene loss indicating that viruses with different gene compositions were circulating in the Early Middle Ages. The M. leprae strain clustered in branch 3 together with the oldest to-date genome from the UK. CONCLUSIONS: The high burden of infectious disease, together with osteological markers of physiological stress, reflect a poor health status of the community. This could have been an indirect result of the climate decline in Europe at the time, caused by the Late Antique Little Ice Age (LALIA). Our findings suggest that LALIA may have created an ecological context in which persistent outbreaks set the stage for major epidemics of severe diseases such as leprosy and smallpox hundreds of years later.


Asunto(s)
Coinfección , Lepra , Persona de Mediana Edad , Humanos , Filogenia , Mycobacterium leprae/genética , Lepra/epidemiología , Lepra/historia , Lepra/microbiología , ADN Antiguo
11.
Nature ; 610(7930): 112-119, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131019

RESUMEN

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Asunto(s)
Pool de Genes , Migración Humana , Arqueología , ADN Antiguo/análisis , Dinamarca , Inglaterra , Femenino , Francia , Genética de Población , Genoma Humano/genética , Alemania , Historia Medieval , Migración Humana/historia , Humanos , Lenguaje , Masculino , Dinámica Poblacional , Armas/historia
12.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142858

RESUMEN

Longevity is a complex phenotype influenced by both environmental and genetic factors. The genetic contribution is estimated at about 25%. Despite extensive research efforts, only a few longevity genes have been validated across populations. Long-lived individuals (LLI) reach extreme ages with a relative low prevalence of chronic disability and major age-related diseases (ARDs). We tested whether the protection from ARDs in LLI can partly be attributed to genetic factors by calculating polygenic risk scores (PRSs) for seven common late-life diseases (Alzheimer's disease (AD), atrial fibrillation (AF), coronary artery disease (CAD), colorectal cancer (CRC), ischemic stroke (ISS), Parkinson's disease (PD) and type 2 diabetes (T2D)). The examined sample comprised 1351 German LLI (≥94 years, including 643 centenarians) and 4680 German younger controls. For all ARD-PRSs tested, the LLI had significantly lower scores than the younger control individuals (areas under the curve (AUCs): ISS = 0.59, p = 2.84 × 10-35; AD = 0.59, p = 3.16 × 10-25; AF = 0.57, p = 1.07 × 10-16; CAD = 0.56, p = 1.88 × 10-12; CRC = 0.52, p = 5.85 × 10-3; PD = 0.52, p = 1.91 × 10-3; T2D = 0.51, p = 2.61 × 10-3). We combined the individual ARD-PRSs into a meta-PRS (AUC = 0.64, p = 6.45 × 10-15). We also generated two genome-wide polygenic scores for longevity, one with and one without the TOMM40/APOE/APOC1 gene region (AUC (incl. TOMM40/APOE/APOC1) = 0.56, p = 1.45 × 10-5, seven variants; AUC (excl. TOMM40/APOE/APOC1) = 0.55, p = 9.85 × 10-3, 10,361 variants). Furthermore, the inclusion of nine markers from the excluded region (not in LD with each other) plus the APOE haplotype into the model raised the AUC from 0.55 to 0.61. Thus, our results highlight the importance of TOMM40/APOE/APOC1 as a longevity hub.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Síndrome de Dificultad Respiratoria , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Longevidad/genética , Polimorfismo de Nucleótido Simple
13.
Front Immunol ; 12: 691475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335597

RESUMEN

Outbreaks of infectious diseases repeatedly affected medieval Europe, leaving behind a large number of dead often inhumed in mass graves. Human remains interred in two burial pits from 14th century CE Germany exhibited molecular evidence of Salmonella enterica Paratyphi C (S. Paratyphi C) infection. The pathogen is responsible for paratyphoid fever, which was likely the cause of death for the buried individuals. This finding presented the unique opportunity to conduct a paratyphoid fever association study in a European population. We focused on HLA-DRB1*03:01 that is a known risk allele for enteric fever in present-day South Asians. We generated HLA profiles for 29 medieval S. Paratyphi C cases and 24 contemporaneous controls and compared these to a modern German population. The frequency of the risk allele was higher in the medieval cases (29.6%) compared to the contemporaneous controls (13%; p = 0.189), albeit not significantly so, possibly because of small sample sizes. Indeed, in comparison with the modern controls (n = 39,689; 10.2%; p = 0.005) the frequency difference became statistically significant. This comparison also suggested a slight decrease in the allele's prevalence between the medieval and modern controls. Up to now, this is the first study on the genetic predisposition to Salmonella infection in Europeans and the only association analysis on paratyphoid fever C. Functional investigation using computational binding prediction between HLA variants and S. Paratyphi and S. Typhi peptides supported a reduced recognition capacity of bacterial proteins by DRB1*03:01 relative to other common DRB1 variants. This pattern could potentially explain the disease association. Our results suggest a slightly reduced predisposition to paratyphoid fever in modern Europeans. The causative allele, however, is still common today, which can be explained by a trade-off, as DRB1*03:01 is protective against infectious respiratory diseases such as severe respiratory syndrome (SARS). It is thus possible that the allele also provided resistance to corona-like viruses in the past.


Asunto(s)
Cadenas HLA-DRB1/genética , Fiebre Paratifoidea/genética , Población Blanca/genética , ADN Antiguo , Predisposición Genética a la Enfermedad , Alemania , Humanos
14.
Cell Rep ; 35(13): 109278, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192537

RESUMEN

A 5,000-year-old Yersinia pestis genome (RV 2039) is reconstructed from a hunter-fisher-gatherer (5300-5050 cal BP) buried at Rinnukalns, Latvia. RV 2039 is the first in a series of ancient strains that evolved shortly after the split of Y. pestis from its antecessor Y. pseudotuberculosis ∼7,000 years ago. The genomic and phylogenetic characteristics of RV 2039 are consistent with the hypothesis that this very early Y. pestis form was most likely less transmissible and maybe even less virulent than later strains. Our data do not support the scenario of a prehistoric pneumonic plague pandemic, as suggested previously for the Neolithic decline. The geographical and temporal distribution of the few prehistoric Y. pestis cases reported so far is more in agreement with single zoonotic events.


Asunto(s)
Peste/microbiología , Yersinia pestis/fisiología , Humanos , Letonia , Funciones de Verosimilitud , Filogenia
15.
iScience ; 24(5): 102419, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997698

RESUMEN

Medieval Europe was repeatedly affected by outbreaks of infectious diseases, some of which reached epidemic proportions. A Late Medieval mass burial next to the Heiligen-Geist-Hospital in Lübeck (present-day Germany) contained the skeletal remains of more than 800 individuals who had presumably died from infectious disease. From 92 individuals, we screened the ancient DNA extracts for the presence of pathogens to determine the cause of death. Metagenomic analysis revealed evidence of Salmonella enterica subsp. enterica serovar Paratyphi C, suggesting an outbreak of enteric paratyphoid fever. Three reconstructed S. Paratyphi C genomes showed close similarity to a strain from Norway (1200 CE). Radiocarbon dates placed the disease outbreak in Lübeck between 1270 and 1400 cal CE, with historical records indicating 1367 CE as the most probable year. The deceased were of northern and eastern European descent, confirming Lübeck as an important trading center of the Hanseatic League in the Baltic region.

16.
Mol Biol Evol ; 38(10): 4059-4076, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34002224

RESUMEN

Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes, we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggest that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.


Asunto(s)
Peste , Yersinia pestis , ADN , Genómica , Humanos , Pandemias/historia , Peste/genética , Yersinia pestis/genética
17.
Sci Rep ; 11(1): 2307, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504886

RESUMEN

The historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s-including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


Asunto(s)
Ostrea/genética , Animales , Ostrea/clasificación , Filogenia , Refugio de Fauna
18.
Commun Biol ; 4(1): 113, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495542

RESUMEN

The Wartberg culture (WBC, 3500-2800 BCE) dates to the Late Neolithic period, a time of important demographic and cultural transformations in western Europe. We performed genome-wide analyses of 42 individuals who were interred in a WBC collective burial in Niedertiefenbach, Germany (3300-3200 cal. BCE). The results showed that the farming population of Niedertiefenbach carried a surprisingly large hunter-gatherer ancestry component (34-58%). This component was most likely introduced during the cultural transformation that led to the WBC. In addition, the Niedertiefenbach individuals exhibited a distinct human leukocyte antigen gene pool, possibly reflecting an immune response that was geared towards detecting viral infections.


Asunto(s)
Agricultura , Conducta Alimentaria/fisiología , Antígenos HLA/genética , Conducta Predatoria/fisiología , Animales , Arqueología , ADN Antiguo/análisis , Europa (Continente) , Evolución Molecular , Variación Genética , Genética de Población , Genoma Humano , Estudio de Asociación del Genoma Completo , Alemania , Historia Antigua , Migración Humana , Humanos , Polimorfismo de Nucleótido Simple , Grupos Raciales/genética , Características de la Residencia
19.
Biotechniques ; 69(6): 455-459, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33135465

RESUMEN

In ancient DNA research, the degraded nature of the samples generally results in poor yields of highly fragmented DNA; targeted DNA enrichment is thus required to maximize research outcomes. The three commonly used methods - array-based hybridization capture and in-solution capture using either RNA or DNA baits - have different characteristics that may influence the capture efficiency, specificity and reproducibility. Here we compare their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum from 11 ancient and 19 modern samples. We find that in-solution approaches are the most effective method in ancient and modern samples of both pathogens and that RNA baits usually perform better than DNA baits.


Asunto(s)
ADN Antiguo/análisis , Mycobacterium leprae/genética , Hibridación de Ácido Nucleico/métodos , Treponema pallidum/genética , Humanos , Reproducibilidad de los Resultados
20.
Sci Rep ; 10(1): 14628, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884081

RESUMEN

Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth-eighteenth century) that started with the Black Death (1,347-1,353). Most of the Y. pestis strains investigated from this pandemic have been isolated from western Europe, and not much is known about the diversity and microevolution of this bacterium in eastern European countries. In this study, we investigated human remains excavated from two cemeteries in Riga (Latvia). Historical evidence suggests that the burials were a consequence of plague outbreaks during the seventeenth century. DNA was extracted from teeth of 16 individuals and subjected to shotgun sequencing. Analysis of the metagenomic data revealed the presence of Y. pestis sequences in four remains, confirming that the buried individuals were victims of plague. In two samples, Y. pestis DNA coverage was sufficient for genome reconstruction. Subsequent phylogenetic analysis showed that the Riga strains fell within the diversity of the already known post-Black Death genomes. Interestingly, the two Latvian isolates did not cluster together. Moreover, we detected a drop in coverage of the pPCP1 plasmid region containing the pla gene. Further analysis indicated the presence of two pPCP1 plasmids, one with and one without the pla gene region, and only one bacterial chromosome, indicating that the same bacterium carried two distinct pPCP1 plasmids. In addition, we found the same pattern in the majority of previously published post-Black Death strains, but not in the Black Death strains. The pla gene is an important virulence factor for the infection of and transmission in humans. Thus, the spread of pla-depleted strains may, among other causes, have contributed to the disappearance of the second plague pandemic in eighteenth century Europe.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Peste/microbiología , Activadores Plasminogénicos/genética , Yersinia pestis/genética , ADN Bacteriano/genética , Epidemias , Europa (Continente)/epidemiología , Humanos , Metagenoma , Pandemias , Peste/epidemiología , Virulencia/genética , Yersinia pestis/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...